SOLUTION OF A NONLINEAR HEAT CONDUCTION PROBLEM
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We present a method for electrically modelling nonlinear contact heat-transfer problems
both with and without taking into account the thermal conductivity of the contact layer.

To determine the temperature fields in bodies of complex configurations, as well as in the solution
of other problems of field theory with complicated boundary conditions, wide use is being made of the
method of electrical analogy to solve successfully both linear and nonlinear problems. In particular,
analog methods are available for solving nonlinear heat conduction with boundary conditions of the types
I-IV on ohmic resistance networks (R-networks) [1], based on Liebmann's method, the solution being ob-
tained iteratively. References [2, 3] are directly concerned with modelling nonlinear problems of contact
heat transfer.

The method of successive approximations is applied in [2] also, however, in contrast to the proce-
dure in [1], only the boundary resistances are changed after each approximation, and not all the resistance
of the R~-network as was required in [1].

The solution given in [3] involved a linearization of the boundary conditions, followed by an intro-
duction of new functions and a reassignment of the remaining boundary conditions. This method requires
matching of the separate resistances of the conducting media employed for modelling the bodies in contact
{or a corresponding selection of the parameters of the R-networks used in modelling with networks of
ohmic resistances). The solution of nonlinear problems of field theory by RC-networks was, until recently,
considered to be unrealizable in general, being possible only as a result of applying special transforma~-
tions and using special devices to model nonlinear boundary conditions [4]. Unfortunately, the problem
with boundary conditions of the fourth kind remained unsolved in view of its complexity and the need for a
special approach.

In this paper we present 2 method for modelling a nonlinear contact heat-transfer problem, based ona
combined use of passive models and apparata constructed on the principle of electronic modelling.

Since the apparata for modelling contact heat transfer, which is our basic concern here, are univer-
sal, i.e., they are equally available for solving both stationary and nonstationary problems, for simplicity
we can, with no loss in generality, consider the stationary problem.

Assume that the thermal conductivity coefficients of two bodies in contact are functions of the tem-
perature: A (t) and A,(t).

Then the stationary heat conduction equations for these bodies may be written as follows:
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Boundary conditions of the fourth kind, which equate temperatures and heat fluxes on the boundary,
are usually written in the form:
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However, in recent years the concept of contact heat transfer has been somewhat broadened (see, for ex-
ample, [3]) to take into account the thermal conductivity of the contact layer formed of protrusions of rough-
ness. In this case, the boundary condition (2) stays the same and the condition (3) is replaced by the fol-
lowing:
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We apply to Egs. (1)-(@4) the integral transformations
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The Egs. (1) are thereby converted into Laplace equations, which may be simulated by passive models (R-
networks or electrically conducting paper).

The boundary conditions (2)-(4) assume the form:
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The electrical arrangement for the case of the boundary conditions (6)-(7) is shown in Fig. 1.

Between the boundary points of the two passive models 1 and 2 there is included a rheostat 3, which,
along with the servomotor 4, the differential amplifier 5, and the two functional transformations 6 and 7,
defines the following system. Control or variation of the resistance 3 proceeds so long as the equality (7)
is not achieved, i.e., as long as the error signal put out by the differential amplifier is not equal to zero.

Since the functions A, (t) and A,(t) are, in general, distinct, the functions & and F may then so differ
from one another that an alternate situation arises, wherein the current must be a flow from a point with
a smaller potential to a point with a higher potential. This situation will prevail, for example, for a general
direction of the current from medel 1 to model 2, the function F on the boundary being larger than the
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Fig. 1. Arrangement for achieving boundary condi-
tions of the fourth kind.
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Fig. 2. Preliminary arrangement of an auxiliary
source with controllable electromotive force.
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Fig. 3. Arrangement for taking into account the ther-
mal conductivity of the contact layer.

boundary value of the function ®. In this case the electrical arrangement becomes somewhat more com-
plicated (Fig. 2) since an additional power supply E; is introduced with an electromotive force directed
opposite to the electromotive force of the basic source E. Moreover the mechanism for handling the error
signal and the control remains the same. ‘

Up to a definite instant, namely up to the passage of the potentiometer indicator to its mean position
the arrangements in Figs. 1 and 2 are equivalent. After the mean position is passed, the auxiliary source
comes into play, where the electromotive force entering the main circuit depends on the position of the
indicator: the further it passes the mean position, the larger the electromotive force.

In the case of the boundary conditions (6) and (8), i.e., when the thermal conductivity of the contact
layer is taken into account, the circuit becomes more involved (Fig. 3) since the error signal is produced
by comparing the current passing from the one model to the other with a quantity proportional to the left
side of Eq. (8). This is achieved, in turn, by introducing with the resistance 3 a measuring resistance 8,
whose voltage is fed to the input of the amplifier 9. The output of the amplifier 9 is connected with the
adder —subtractor 10, into which are also fed the signals from the function converters 6 and 7, which con-
vert the potentials of the boundary points to conform to the transformations (5).

Control of the resistance 3 is effected by the servomotor 4, whose amplifier is connected to the out-
put of the adder —subtractor 10.

In order to provide for the case where the current must flow from a peint of lower potential to a point
of higher potential, both in the arrangement shown in Fig. 3 as well as in the previous arrangement, an
auxiliary source E; is provided, which, from some instant on, also begins to partake in the control.
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Thus, independent of the statement of the problem (with or without taking into account the thermal
conductivity of the contact layer), it can be solved through analog devices using one scheme or another
for handling the boundary conditions.

The solution of a nonlinear contact heat-transfer problem through the use of the arrangements pro-
posed above differs advantageously, in our view, from, on the one hand, methods based on Liebmann's
method, since it does not require recomputation and reassignment of all the resistances of the R-network
after each approximation, and, on the other hand, the methods of [2, 3], since linearization of the boundary
conditions is avoided and the results are obtained in one step without involving the method of successive
approximations.

NOTATION
t is the temperature;
A is the thermal conductivity;
a is the heat-transfer coefficients;
X,V Z are the Cartesian coordinates; :
n is the direction of outer normal to body surface.

Subscripts

1, 2 denote the first and second contacting bodies, respectively.
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